LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Efficacy Assessment of Phosphate Removal from Drainage Waters by Modified Reactive Material

Photo from wikipedia

Phosphates may pose a threat to the aquatic ecosystem when there is a connection or a path between the soil and the aquatic ecosystem. Runoff and drainage ditches connect arable… Click to show full abstract

Phosphates may pose a threat to the aquatic ecosystem when there is a connection or a path between the soil and the aquatic ecosystem. Runoff and drainage ditches connect arable land with the waters of the receiver. Phosphates in the runoff and the ditches contribute to the negative phenomenon of surface water eutrophication. In order to prevent it, certain reactive materials are used which are capable of the selective removal of compounds by way of sorption or precipitation. Zeolites can be distinguished among the many reactive materials. Within the present analysis, the modification of a reactive material containing zeolites was carried out using calcium hydroxide solutions of different concentrations. A certain concentration of calcium hydroxide was created for use in further studies. In order to characterise the new material, an analysis was done of the chemical and mineral composition, as well as the porous texture and morphology. The efficacy of phosphate removal for its typical concentrations in drainage waters in Poland was confirmed by way of an experiment. Using a modified reactive material as an element of landscape structures may reduce the negative impact of phosphates on the quality of surface water.

Keywords: reactive material; phosphate removal; material; drainage waters

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.