LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determination, Modeling and Evaluation of Kinetics of 223Ra Sorption on Hydroxyapatite and Titanium Dioxide Nanoparticles

Photo by knikodinovski from unsplash

Sorption kinetics of radium on hydroxyapatite and titanium dioxide nanomaterials were studied. The main aim of the current study was to determine the rate-controlling process and the corresponding kinetic model,… Click to show full abstract

Sorption kinetics of radium on hydroxyapatite and titanium dioxide nanomaterials were studied. The main aim of the current study was to determine the rate-controlling process and the corresponding kinetic model, due to the application of studied nanomaterials as α-emitters’ carriers, and to assess the sorption properties of both materials from the radiopharmaceutical point of view by time regulated sorption experiments on the nanoparticles. Radium-223 was investigated as radionuclide used in targeted alpha particle therapy as an in vivo generator. It was found that the controlling process of the 223Ra sorption kinetics was the diffusion in a reacted layer. Therefore, parameters like particle size, their specific surface area, contact time and temperature played important role. Moreover, the composition of liquid phase, such as pH, the concentration of 223Ra, ionic strength, the presence of complexation ligands, etc., had to be considered. Experiments were conducted under free air conditions and at pH 8 for hydroxyapatite and pH 6 for titanium dioxide in Britton–Robinson buffer. Initial 223Ra concentration was in the range from 10−11 to 10−12 mol/L. It was found that sorption kinetics was very fast (more than 90% in the first hour) in the case of both nanomaterials, so they can be directly used for efficient radium sorption.

Keywords: hydroxyapatite titanium; sorption; 223ra sorption; titanium dioxide

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.