We report the synthesis and thermoelectric transport properties of As-doped layered pnictogen oxyselenides NdO0.8F0.2Sb1−xAsxSe2 (x ≤ 0.6), which are predicted to show high-performance thermoelectric properties based on first-principles calculation. The… Click to show full abstract
We report the synthesis and thermoelectric transport properties of As-doped layered pnictogen oxyselenides NdO0.8F0.2Sb1−xAsxSe2 (x ≤ 0.6), which are predicted to show high-performance thermoelectric properties based on first-principles calculation. The crystal structure of these compounds belongs to the tetragonal P4/nmm space group (No. 129) at room temperature. The lattice parameter c decreases with increasing x, while a remains almost unchanged among the samples. Despite isovalent substitution of As for Sb, electrical resistivity significantly rises with increasing x. Very low thermal conductivity of less than 0.8 Wm−1K−1 is observed at temperatures between 300 and 673 K for all the examined samples. For As-doped samples, the thermal conductivity further decreases above 600 K. Temperature-dependent synchrotron X-ray diffraction indicates that an anomaly also occurs in the c-axis length at around 600 K, which may relate to the thermal transport properties.
               
Click one of the above tabs to view related content.