LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites

Photo by majesticlukas from unsplash

Metakaolinite-based geopolymer binder was prepared at room temperature by mixing calcined claystone and potassium alkaline activator. Various granular inorganic fillers were added, amounting to 65 vol % to form geopolymer… Click to show full abstract

Metakaolinite-based geopolymer binder was prepared at room temperature by mixing calcined claystone and potassium alkaline activator. Various granular inorganic fillers were added, amounting to 65 vol % to form geopolymer composites. The effect of four types of fillers (sand quartz, chamotte, cordierite, and corundum) on the thermo-mechanical properties of metakaolinite-based geopolymer composites were investigated. The samples were also examined by an X-ray diffraction method to determine their phase composition. The pore size distributions were determined by a mercury intrusion porosimeter. The XRD revealed the crystallization of new phase (leucite) after thermal exposure at 1000 °C and higher. Geopolymer binders had low mechanical properties (flexural strength 2.5 MPa and compressive strength 45 MPa) and poor thermo-mechanical properties (especially high shrinkage—total shrinkage 9%) compared to geopolymer composites (flexural strength up to 13.8 MPa, compressive strength up to 95 MPa and total shrinkage up to 1%). The addition of fillers reduced the shrinkage of geopolymers and improved their mechanical properties. The results have shown that the compressive strength tested in situ and after exposure to high temperature are in conflict. Geopolymer composites with the addition of chamotte had the best mechanical properties before and after thermal exposure (compressive strength up to 95 MPa). The average pore size diameters increased with the increasing temperature (from 10 nm to approx. 700 nm). The fillers addition decreased the pore volume (from 250 mm3/g to approx. 100 mm3/g).

Keywords: strength; metakaolinite based; mechanical properties; based geopolymer; geopolymer; geopolymer composites

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.