LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and Mechanical Properties of Hypo- and Hypereutectic Cast Mg/Mg2Si Composites

Photo from wikipedia

In this paper, the microstructure and mechanical properties of two magnesium matrix composites—a hypoeutectic with 1.9 wt% Mg2Si phase and a hypereutectic with 19 wt% Mg2Si compound—were analyzed. The investigated… Click to show full abstract

In this paper, the microstructure and mechanical properties of two magnesium matrix composites—a hypoeutectic with 1.9 wt% Mg2Si phase and a hypereutectic with 19 wt% Mg2Si compound—were analyzed. The investigated materials were prepared using the gravity casting method. Microstructure analyses of the fabricated composites were carried out by XRD and light microscopy. The tensile and compression strength as well as yield strength of the composites were examined in both uniaxial tensile and compression tests. The microstructure of the hypoeutectic composite was in agreement with the phase diagram and composed of primary Mg dendrites and an Mg–Mg2Si eutectic mixture. For the hypereutectic composite, besides the primary Mg2Si phase and eutectic mixture, additional magnesium dendrites surrounding the Mg2Si compound were observed due to nonequilibrium solidification conditions. The composites exhibited a rise in the examined mechanical properties with an increase in the Mg2Si weight fraction and also a higher tensile and compression strength in comparison to the pure magnesium matrix (cast in the same conditions). Additionally, analyses of fracture surfaces of the composites carried out using scanning electron microscopy (SEM + EDX) are presented.

Keywords: tensile compression; microscopy; microstructure mechanical; mechanical properties; mg2si; properties hypo

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.