LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy

Photo from wikipedia

A three dimensional finite element model (FEM) was established to simulate the temperature distribution, flow activity, and deformation of the melt pool of selective laser melting (SLM) AZ91D magnesium alloy… Click to show full abstract

A three dimensional finite element model (FEM) was established to simulate the temperature distribution, flow activity, and deformation of the melt pool of selective laser melting (SLM) AZ91D magnesium alloy powder. The latent heat in phase transition, Marangoni effect, and the movement of laser beam power with a Gaussian energy distribution were taken into account. The influence of the applied linear laser power on temperature distribution, flow field, and the melt-pool dimensions and shape, as well as resultant densification activity, was investigated and is discussed in this paper. Large temperature gradients and high cooling rates were observed during the process. A violent flow occurred in the melt pool, and the divergent flow makes the melt pool wider and longer but shallower. With the increase of laser power, the melt pool’s size increases, but the shape becomes longer and narrower. The width of the melt pool in single-scan experiment is acquired, which is in good agreement with the results predicted by the simulation (with error of 1.49%). This FE model provides an intuitive understanding of the complex physical phenomena that occur during SLM process of AZ91D magnesium alloy. It can help to select the optimal parameters to improve the quality of final parts and reduce the cost of experimental research.

Keywords: magnesium alloy; melt pool; az91d magnesium; laser

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.