LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural Investigations of Ni-Based Superalloys by Directional Solidification Quenching Technique

Photo from wikipedia

The improvement of the mechanical properties of Ni-based superalloys is achieved in most cases by modifying the chemical composition. Besides that, the processing can be modified to optimize the as-cast… Click to show full abstract

The improvement of the mechanical properties of Ni-based superalloys is achieved in most cases by modifying the chemical composition. Besides that, the processing can be modified to optimize the as-cast microstructure with regard to the mechanical properties. In this context, the present study highlights the solidification mechanism of several Ni-based superalloys by conducting experiments using a modified, laboratory-scale Bridgman-Stockbarger furnace. In that context, the single-crystal rods are partially melted, directionally solidified and quenched sequentially. Several characterization methods are applied to further analyze the influence of the alloying elements and the variation of the withdrawal rate on the as-cast microstructure. Four stages of solidification are distinguished whereby the morphology observed in the different stages mainly depends on the cooling rate and the local concentration of the carbide forming elements. The effect of carbide precipitation and the effect on the as-cast microstructure is investigated by employing energy dispersive X-ray spectrometry (EDX) and electron backscatter diffraction (EBSD) analysis techniques. A local polycrystalline structure is observed in the single-crystal system as consequence of the influence of the carbon content and the cooling rate. The present work aims to develop strategies to suppress the formation of the polycrystalline structure to maintain the single-crystal microstructure.

Keywords: based superalloys; cast microstructure; single crystal; microstructural investigations; solidification

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.