LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation

Photo from wikipedia

New-generation oxide dispersion-strengthened (ODS) alloys with a high volume fraction of nano-oxides of 5% are intended to become the leading creep- and oxidation-resistant alloys for applications at 1100–1300 °C. Hot… Click to show full abstract

New-generation oxide dispersion-strengthened (ODS) alloys with a high volume fraction of nano-oxides of 5% are intended to become the leading creep- and oxidation-resistant alloys for applications at 1100–1300 °C. Hot consolidation of mechanically alloyed powders by intensive plastic deformation followed by heat treatment of the alloys are the key aspects for achieving top creep properties, typically ensured by a coarse-grained microstructure strengthened with homogeneously dispersed, very stable yttrium nano-oxides. The rotary swaging method proves to be favourable for hot consolidation of the new-generation ODS alloy presented. Compared to specimens consolidated by hot rolling, consolidation by hot rotary swaging predetermines the formation of coarse grains with a very high aspect ratio during subsequent secondary recrystallization. Such a grain morphology increases the creep strength of the new-generation ODS alloy considerably.

Keywords: new generation; consolidation; rotary swaging; generation; hot rotary; nano

Journal Title: Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.