LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quasi-Continuous Metasurface Beam Splitters Enabled by Vector Iterative Fourier Transform Algorithm

Photo by sthomanns from unsplash

Quasi-continuous metasurfaces are widely used in various optical systems and their subwavelength structures invalidate traditional design methods based on scalar diffraction theory. Here, a novel vector iterative Fourier transform algorithm… Click to show full abstract

Quasi-continuous metasurfaces are widely used in various optical systems and their subwavelength structures invalidate traditional design methods based on scalar diffraction theory. Here, a novel vector iterative Fourier transform algorithm (IFTA) is proposed to realize the fast design of quasi-continuous metasurface beam splitters with subwavelength structures. Compared with traditional optimization algorithms that either require extensive numerical simulations or lack accuracy, this method has the advantages of accuracy and low computational cost. As proof-of-concept demonstrations, several beam splitters with custom-tailored diffraction patterns and a 7 × 7 beam splitter are numerically demonstrated, among which the maximal diffraction angle reaches 70° and the best uniformity error reaches 0.0195, showing good consistency with the target energy distribution and these results suggest that the proposed vector IFTA may find wide applications in three-dimensional imaging, lidar techniques, machine vision, and so forth.

Keywords: vector iterative; beam splitters; quasi continuous; iterative fourier

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.