LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Fast High-Intensity versus Conventional Light-Curing Protocol on Selected Properties of Dental Composites

Photo from wikipedia

To study the influence of fast high-intensity (3-s) and conventional (20-s) light curing protocols on certain physical properties including light-transmission and surface wear of two nano-hybrid composite resins (Tetric PowerFill… Click to show full abstract

To study the influence of fast high-intensity (3-s) and conventional (20-s) light curing protocols on certain physical properties including light-transmission and surface wear of two nano-hybrid composite resins (Tetric PowerFill and Essentia U) specifically designed for both curing protocols. According to ISO standards, the following properties were investigated: flexural properties, fracture toughness and water sorption/solubility. FTIR-spectrometry was used to calculate the double bond conversion (DC%). A wear test using a chewing simulator was performed with 15,000 chewing cycles. A tensilometer was used to measure the shrinkage stress. Light transmission through various thicknesses (1, 2, 3 and 4 mm) of composite resins was quantified. The Vickers indenter was utilized for evaluating surface microhardness (VH) at the top and the bottom sides. Scanning electron microscopy was utilized to investigate the microstructure of each composite resin. The light curing protocol did not show a significant (p > 0.05) effect on the mechanical properties of tested composite resins and differences were material-dependent. Shrinkage stress, DC% and VH of both composite resins significantly increased with the conventional 20 s light curing protocol (p < 0.05). Light curing conventional composite resin with the fast high-intensity (3-s) curing protocol resulted in inferior results for some important material properties.

Keywords: conventional light; fast high; high intensity; curing protocol; light curing

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.