LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Titanium-Implanted Dose on the Tribological Properties of 316L Stainless Steel

Photo by briangarrityphoto from unsplash

The effects of titanium (Ti) ion-implanted doses on the chemical composition, surface roughness, mechanical properties, as well as tribological properties of 316L austenitic stainless steel are investigated in this paper.… Click to show full abstract

The effects of titanium (Ti) ion-implanted doses on the chemical composition, surface roughness, mechanical properties, as well as tribological properties of 316L austenitic stainless steel are investigated in this paper. The Ti ion implantations were carried out at an energy of 40 kV and at 2 mA for different doses of 3.0 × 1016, 1.0 × 1017, 1.0 × 1018, and 1.7 × 1018 ions/cm2. The results showed that a new phase (Cr2Ti) was detected, and the concentrations of Ti and C increased obviously when the dose exceeded 1.0 × 1017 ions/cm2. The surface roughness can be significantly reduced after Ti ion implantation. The nano-hardness increased from 3.44 to 5.21 GPa at a Ti ion-implanted dose increase up to 1.0 × 1018 ions/cm2. The friction coefficient decreased from 0.78 for un-implanted samples to 0.68 for a sample at the dose of 1.7 × 1018 ions/cm2. The wear rate was slightly improved when the sample implanted Ti ion at a dose of 1.0 × 1018 ions/cm2. Adhesive wear and oxidation wear are the main wear mechanisms, and a slightly abrasive wear is observed during sliding. Oxidation wear was improved significantly as the implantation dose increased.

Keywords: tribological properties; ions cm2; properties 316l; stainless steel; ion; effects titanium

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.