LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ce/Sm/Sr-Incorporating Ceramic Scaffolds Obtained via Sol-Gel Route

Photo from academic.microsoft.com

Three different inorganic scaffolds were obtained starting from the oxide system SiO2‒P2O5‒CaO‒MgO, to which Ce4+/Sm3+/Sr2+ cations were added in order to propose novel materials with potential application in the field… Click to show full abstract

Three different inorganic scaffolds were obtained starting from the oxide system SiO2‒P2O5‒CaO‒MgO, to which Ce4+/Sm3+/Sr2+ cations were added in order to propose novel materials with potential application in the field of hard tissue engineering. Knowing the beneficial effects of each element, improved features in terms of mechanical properties, antibacterial activity and cellular response are expected. The compositions were processed in the form of scaffolds by a common sol-gel method, followed by a thermal treatment at 1000 and 1200 °C. The obtained samples were characterized from thermal, compositional, morphological and mechanical point of view. It was shown that each supplementary component triggers the modification of the crystalline phase composition, as well as microstructural details. Moreover, the shrinkage behavior is well correlated with the attained compression strength values. Sm was proven to be the best choice, since in addition to a superior mechanical resistance, a clear beneficial influence on the viability of 3T3 fibroblast cell line was observed.

Keywords: scaffolds obtained; obtained via; incorporating ceramic; via sol; sol gel; ceramic scaffolds

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.