LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Acetylated SEBS/PP for Potential HVAC Cable Insulation

Photo by phillbrown from unsplash

Blending polypropylene (PP) with thermoplastic elastomer SEBS can effectively improve the mechanical toughness of PP, thus leading to the promise of SEBS/PP as the primary insulation material for high voltage… Click to show full abstract

Blending polypropylene (PP) with thermoplastic elastomer SEBS can effectively improve the mechanical toughness of PP, thus leading to the promise of SEBS/PP as the primary insulation material for high voltage alternating current (HVAC) cables. However, the growth of electrical trees during cable operation limits the application of SEBS/PP. In this paper, acetylation reaction is used to construct acetophenone group at the end of the benzene ring on SEBS so that it has the effect of both a toughening agent and a voltage stabilizer. Then PP was melt blended with acetylated SEBS (Ac-SEBS), and the effects of Ac-SEBS on the mechanical properties, electrical tree resistance, alternating current (AC) breakdown strength, and dielectric spectrum of PP were mainly investigated with reference to PP and SEBS/PP. The results showed that Ac-SEBS with 30% content could enhance the mechanical toughness of PP and improve the electrical tree resistance and AC breakdown strength of SEBS/PP. The AC breakdown field strength of Ac-SEBS/PP reached the highest when the acetylation level was 4.6%, which was 9.2% higher than that of SEBS/PP. At this time, Ac-SEBS was also able to absorb high-energy electrons through the keto-enol interchange isomerization reaction, which inhibited the initiation and growth of electric trees and caused the development of electric dendrites in a jungle-like manner. Moreover, the dielectric loss factor of AC-SEBS/PP in power frequency is within the allowable range of industry. Therefore, Ac-SEBS/PP is expected to be applied to HVAC cables, thus further improving the efficiency of HVAC power transmission.

Keywords: hvac; acetylated sebs; sebs; cable; insulation; effect

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.