C/C composite was brazed to TiAl intermetallic compound using a commercial BNi-2 brazing filler metal under vacuum brazing condition. The brazing temperature was 1030~1150 °C and the holding time was… Click to show full abstract
C/C composite was brazed to TiAl intermetallic compound using a commercial BNi-2 brazing filler metal under vacuum brazing condition. The brazing temperature was 1030~1150 °C and the holding time was 20 min. The joint interfacial microstructures and mechanical properties were studied, and the fracture behavior and joining mechanism were also investigated. The effect of brazing temperature on the joint shear strength was explored. The results showed that a perfect interface joint can be obtained by using BNi-2 to braze C/C and TiAl. During brazing, Ti, Cr, and other carbide forming elements diffused to C/C composite side, forming Cr3C2, Cr7C3, TiC, and other carbides, and realizing metallurgical joining between the brazing filler metal and C/C composite. The microstructure of the interface of C/C composite and TiAl intermetallic compound joint is as follows: TiAl alloy → TiAl + AlNi3 → AlNi2Ti → Ni(s, s) + Ti3Al + Ni3Si → Ni(s, s) + Ni3(Si, B) + CrB → Ni(s, s) + Ni3Si + TiCr2 → (Ti, Cr)C → C/C composite. When the holding time is fixed, with the increase of brazing temperature, the shear strength of the joint increases first and then decreases. The maximum average room temperature shear strength of the brazed joint was 11.62 MPa, while the brazing temperature was 1060 °C and the holding time was 20 min.
               
Click one of the above tabs to view related content.