LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparison of Accuracy of Different Dental Restorative Materials between Intraoral Scanning and Conventional Impression-Taking: An In Vitro Study

Photo from wikipedia

The properties of underlying substrates influence the quality of an intraoral scan, but few studies have compared the outcomes using common restorative materials. In this study, we aimed to compare… Click to show full abstract

The properties of underlying substrates influence the quality of an intraoral scan, but few studies have compared the outcomes using common restorative materials. In this study, we aimed to compare the accuracy of digital and conventional impressions recorded for four different dental materials as the substrates. Experimental crowns were produced with a metallic surface (gold or cobalt-chromium alloy (Co-Cr)) or without a metallic surface (zirconia or PMMA (polymethyl methacrylate)). A conventional impression was made in the conventional group (CON group), and gypsum models were subsequently scanned with a tabletop scanner. An intraoral scanner was used to scan the crowns either after applying a powder spray to reduce the surface reflectivity (IOS-P group) or without the powder spray (IOS group). The scans were assessed in three dimensions for precision and trueness. The accuracy did not differ between the CON and IOS groups for the non-metallic crowns. However, it was statistically different for the Co-Cr metallic crown, reducing trueness observed between groups as CON > IOS > IOS-P. The study evidences the differences in outer surface accuracy observed with a change in the substrate material to be imaged using an oral scanner and with the impression method. These findings suggest that the restoration material present in the oral cavity should be considered when selecting an impression-taking method.

Keywords: different dental; impression; conventional impression; restorative materials; accuracy; impression taking

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.