LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Segmented-Block Poly(ether amide)s Containing Flexible Polydisperse Polyethyleneoxide Sequences and Rigid Aromatic Amide Moieties

Photo from academic.microsoft.com

We describe the synthesis and characterization of three novel aromatic diamines containing oxyethylene sequences of different lengths. These diamines were polymerized using the low-temperature solution polycondensation method with isophthaloyl chloride… Click to show full abstract

We describe the synthesis and characterization of three novel aromatic diamines containing oxyethylene sequences of different lengths. These diamines were polymerized using the low-temperature solution polycondensation method with isophthaloyl chloride (IPC), terepthaloyl chloride (TPC), [1,1’-biphenyl]-4,4’-dicarbonyl dichloride (BDC), and 4,4′-oxybis(benzoyl chloride) (OBE), obtaining twelve poly(ether amide)s with short segments of polydisperse polyethyleneoxide (PEO) sequences in the polymer backbone. These polymers show reasonably high molecular mass materials (Mw > 12,000), and the relationship between their structure and properties has been carefully studied. Compared with conventional polyamides containing monodisperse PEO sequences, the polydispersity of the PEO segments within the structural units exerts a significant influence on the crystallinity, flexibility, solubility, and the thermal properties of the polymers. For instance, the all-para oriented polyamides (TPCP-A), with an average number of 8.2 ethylenoxide units per structural unit can be transformed conventionally (Tm = 259 °C) in comparison with thermally untransformable polymer with 2 ethylenoxide units (Tm = 425 °C).

Keywords: ether amide; block poly; polydisperse polyethyleneoxide; segmented block; poly ether

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.