LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrasound Supported Galvanostatic Deposition of Zn Coatings Reinforced with Nano-, Submicro-, and Micro-SiC Particles—Weak Acidic Chloride Baths

Photo by galihnyb_06 from unsplash

In this paper, we present results concerning the electrochemical deposition of Zn-SiC composite coatings reinforced with nano-, submicro-, and microparticles. The influence of current density, particle size, and ultrasound on… Click to show full abstract

In this paper, we present results concerning the electrochemical deposition of Zn-SiC composite coatings reinforced with nano-, submicro-, and microparticles. The influence of current density, particle size, and ultrasound on functional parameters which are especially important from a practical point of view (i.e., concentration of particles in coatings, current efficiency, morphology, reflectivity, roughness, hardness, and corrosion resistance) are investigated and discussed. Coatings were deposited from commercial, chloride-based electrolytes dedicated for the deposition of Zn coatings in a weakly acidic environment. Electrodeposited composites contained up to 1.58, 4.08, and 1.15 wt. % of SiC for coatings reinforced with nano, submicro, and micrometric particles, respectively. The process proceeded with relatively high efficiency, exceeding 80% in almost all cases. The results indicate that ultrasounds strongly increase Faradaic efficiency and affect the kinetics of electrode processes and the properties of synthesized coatings. Moreover, the obtained results show that it is possible to synthesize composite coatings with slightly higher mechanical properties while retaining corrosion resistance compared to metallic Zn coatings.

Keywords: coatings reinforced; reinforced nano; nano submicro; deposition coatings

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.