LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Nanocellulose on the Properties of Cottonseed Protein Isolate as a Paper Strength Agent

Photo from wikipedia

Currently, there is an increasing interest in the use of biopolymers in industrial applications to replace petroleum-based additives, since they are abundantly available, renewable and sustainable. Cottonseed protein is a… Click to show full abstract

Currently, there is an increasing interest in the use of biopolymers in industrial applications to replace petroleum-based additives, since they are abundantly available, renewable and sustainable. Cottonseed protein is a biopolymer that, when used as a modifier, has shown improved performance for wood adhesives and paper products. Thus, it would be useful to explore the feasibility of using cellulose nanomaterials to further improve the performance of cottonseed protein as a paper strength agent. This research characterized the performance of cottonseed protein isolate with/without cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs) to increase the dry strength of filter paper. An application of 10% protein solution with CNCs (10:1) or CNFs (50:1) improved the elongation at break, tensile strength and modulus of treated paper products compared to the improved performance of cottonseed protein alone. Further analysis using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) indicated that the cottonseed protein/nanocellulose composites interacted with the filter paper fibers, imparting an increased dry strength.

Keywords: strength agent; paper strength; paper; cottonseed protein; protein isolate

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.