LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-Dimensional Analysis of Ferrite Grains Recrystallized in Low-Carbon Steel during Annealing

Photo from wikipedia

We performed a three-dimensional (3D) analysis of ferrite grains recrystallized in low-carbon steel during annealing. Cold-rolled specimens were heated to 723 K and held for various periods. The 3D morphology… Click to show full abstract

We performed a three-dimensional (3D) analysis of ferrite grains recrystallized in low-carbon steel during annealing. Cold-rolled specimens were heated to 723 K and held for various periods. The 3D morphology of ferrite grains recrystallized during the annealing process was investigated. The progress of recovery in low-carbon steel was more inhibited than that in pure iron. However, ferrite recrystallization in low-carbon steel was more rapid than that in pure iron. The Avrami exponent was inconsistent with the 3D morphology of the recrystallized ferrite grains in pure iron but consistent with that of the grains in low-carbon steel. Thus, the Avrami exponent depends on the recovery and recrystallization behaviors. Furthermore, the recrystallized ferrite grain growth was virtually 2D. Three types of recrystallized ferrite grains were observed: recrystallized ferrite grains elongated along the transverse or rolling direction; plate-shaped recrystallized ferrite grains grown in the transverse and rolling directions; fine and equiaxed recrystallized ferrite grains. These results suggest that the recrystallized ferrite grains did not grow in the normal direction. Thus, we concluded that the 3D morphology of recrystallized ferrite grains depends on the kinetics of recrystallization and the initial microstructure before recrystallization.

Keywords: recrystallized ferrite; low carbon; ferrite grains; carbon steel

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.