LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electroless Plating of High-Performance Composite Pd Membranes with EDTA-Free Bath

Photo by jareddrice from unsplash

High-performance composite Pd membranes were successfully fabricated using electroless plating with an EDTA-free bath. The plating started with employing the one-time addition of hydrazine. In the experiment, the hydrazine concentrations… Click to show full abstract

High-performance composite Pd membranes were successfully fabricated using electroless plating with an EDTA-free bath. The plating started with employing the one-time addition of hydrazine. In the experiment, the hydrazine concentrations and plating bath volumes were systematically varied to optimize the plating. The optimum composite Pd membrane tube showed high H2 permeance of 4.4 × 10−3 mol/m2 s Pa0.5 and high selectivity of 1.6 × 104, but poor cycling stability. Then, a method of sequential addition of the hydrazine from the high to low concentrations was employed. The resultant membrane, about 6 μm thick, still exhibited a high selectivity of 6.8 × 104 as well as a much-improved plating yield and cycling stability level; this membrane outperformed the membrane made using the unmodified plating technique with the EDTA-contained bath. This result indicates the EDTA-free bath combined with the sequential addition of hydrazine is a simple, low-cost, yet effective method for preparing thin, dense composite Pd membranes featuring high hydrogen permeation flux and high thermal durability.

Keywords: composite membranes; bath; edta free; free bath; performance composite; high performance

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.