LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and Corrosion Resistance of Underwater Laser Cladded Duplex Stainless Steel Coating after Underwater Laser Remelting Processing

Photo by yannispap from unsplash

Combined with the technologies of underwater local dry laser cladding (ULDLC) and underwater local dry laser remelting (ULDLR), a duplex stainless steel (DSS) coating has been made in an underwater… Click to show full abstract

Combined with the technologies of underwater local dry laser cladding (ULDLC) and underwater local dry laser remelting (ULDLR), a duplex stainless steel (DSS) coating has been made in an underwater environment. The phase composition, microstructure, chemical components and electrochemical corrosion resistance was studied. The results show that after underwater laser remelting, the phase composition of DSS coating remains unchanged and the phase transformation from Widmanstätten austenite + intragranular austenite + (211) ferrite to (110) ferrite occurred. The ULDLR process can improve the corrosion resistance of the underwater local dry laser cladded coating. The corrosion resistance of remelted coating at 3 kW is the best, the corrosion resistance of remelted coating at 1kW and 5kW is similar and the corrosion resistance of (110) ferrite phase is better than grain boundary austenite phase. The ULDLC + ULDLR process can meet the requirements of efficient underwater maintenance, forming quality control and corrosion resistance. It can also be used to repair the surface of S32101 duplex stainless steel in underwater environment.

Keywords: underwater laser; corrosion resistance; corrosion; laser remelting

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.