LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Piezoelectric Ceramics with High d33 Constants and Their Application to Film Speakers

Photo from academic.microsoft.com

A multilayer piezoelectric material was fabricated using piezoelectric materials with low-temperature sintering capabilities and high piezoelectric coefficients to develop a functionally superior piezoelectric speaker with a large-displacement deformation. A soft… Click to show full abstract

A multilayer piezoelectric material was fabricated using piezoelectric materials with low-temperature sintering capabilities and high piezoelectric coefficients to develop a functionally superior piezoelectric speaker with a large-displacement deformation. A soft relaxor was utilized to prepare the component materials, with the optimized composition of the investigated piezoelectric ceramics represented by 0.2Pb((Zn0.8Ni0.2)13Nb23)O3−0.8Pb(Zr0.5Ti0.5)O3. Li2CO3 was added to assist the low-temperature sintering conducted at 875 °C, which yielded a multilayer piezoelectric material with superior properties (d33 = 500 pC N−1, kp = 0.63, g33 = 44 mV N−1). A multilayer piezoelectric actuator with a single-layer thickness of ~40 µm and dimensions of 12 × 16 mm2 was fabricated by tape casting the prepared green sheets. Finite element analysis revealed that the use of a PEEK film and a smaller silicone–rubber film as a composite in the diaphragm realized optimal frequency-response characteristics; the vibrations generated by the piezoelectric element were amplified. The optimal structure obtained via simulations was applied to fabricate an actual piezoelectric speaker with dimensions of 20 × 24 × 1 mm3. The actual measurements exhibited a sound pressure level of ~75 dB and a total harmonic distortion ≤15% in the audible frequency range (250–20,000 Hz) at an applied voltage of 5 Vp.

Keywords: multilayer piezoelectric; high d33; ceramics high; d33 constants; piezoelectric ceramics; film

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.