LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

All-Dielectric Huygens’ Metasurface for Wavefront Manipulation in the Visible Region

Photo from wikipedia

All-dielectric Huygens’ metasurfaces have been widely used in wavefront manipulation through multipole interactions. Huygens’ metasurfaces utilize the superposition between an electric dipole and a magnetic dipole resonance to realize transmission… Click to show full abstract

All-dielectric Huygens’ metasurfaces have been widely used in wavefront manipulation through multipole interactions. Huygens’ metasurfaces utilize the superposition between an electric dipole and a magnetic dipole resonance to realize transmission enhancement and an accumulated 2π phase change. Benefiting from this unique property, we design and numerically investigate an all-dielectric Huygens’ metasurface exhibiting high-efficiency anomalous refraction. To suppress the substrate effect, the metasurface structure is submerged in a dielectric plate. We strategically placed two elements in four short periods to form a unit cell and adjusted the spacing between the two elements to effectively inhibit the interaction between elements. At the operating wavelength of 692 nm, the obtained anomalous transmission efficiency is over 90.7% with a diffraction angle of 30.84°. The performance of the proposed structure is far superior to most of the existing phase-gradient metasurface structures in the visible region, which paves the way for designing efficient beam deflection devices.

Keywords: dielectric huygens; huygens metasurface; wavefront manipulation; visible region

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.