LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Investigation of Moisture Sensitivity and Damage Evolution of Porous Asphalt Mixtures

Photo from wikipedia

Porous asphalt (PA) mixtures are designed with a high air void (AV) (i.e., 18~22%) content allowing rainwater to infiltrate into their internal structures. Therefore, PA mixtures are more sensitive to… Click to show full abstract

Porous asphalt (PA) mixtures are designed with a high air void (AV) (i.e., 18~22%) content allowing rainwater to infiltrate into their internal structures. Therefore, PA mixtures are more sensitive to moisture damage than traditional densely graded asphalt mixtures. However, the moisture damage evolution of PA mixtures is still unclear. The objective of this study was to investigate the moisture damage evolution and durability damage evolution of PA mixtures. The indirect tensile test (ITT), ITT fatigue test, and Cantabro loss test were used to evaluate the moisture sensitivity and durability of PA mixtures, and a staged ITT fatigue test was developed to investigate the damage evolutions under dry and wet conditions. Indirect tensile strength (ITS), fatigue life, indirect tensile resilience modulus (E), and durability decreased with the increment of moisture damage and loading cycles. The fatigue life is more sensitive to the moisture damage. The largest decrements in ITS and E were found in the first 3000 loading cycles, and PA mixtures tended to fail when the decrement exceeded 60%. Damage factors based on the ITS and E are proposed to predict the loading history of PA mixtures. The durability damage evolution and damage factors could fit an exponential model under dry conditions. Moisture had a significant influence and an acceleration function on the moisture damage evolution and durability damage evolution of PA mixtures.

Keywords: damage; asphalt mixtures; moisture damage; damage evolution

Journal Title: Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.