LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Luminescent Down-Shifting Spectral Conversion Effects on Silicon Solar Cells with Various Combinations of Eu-Doped Phosphors

Photo from wikipedia

Luminescent down-shifting (LDS) spectral conversion is a feasible approach to enhancing the short-wavelength response of single junction solar cells. This paper presents the optical and electrical characteristics of LDS spectral… Click to show full abstract

Luminescent down-shifting (LDS) spectral conversion is a feasible approach to enhancing the short-wavelength response of single junction solar cells. This paper presents the optical and electrical characteristics of LDS spectral conversion layers containing a single species or two species of Eu-doped phosphors applied to the front surface of silicon solar cells via spin-on coating. The chemical composition, surface morphology, and fluorescence emission of the LDS layers were respectively characterized using energy-dispersive X-ray analysis, optical imaging, and photoluminescence measurements. We also examined the LDS effects of various phosphors on silicon solar cells in terms of optical reflectance and external quantum efficiency. Finally, we examined the LDS effects of the phosphors on photovoltaic performance by measuring photovoltaic current density–voltage characteristics using an air-mass 1.5 global solar simulator. Compared to the control cell, the application of a single phosphor enhanced efficiency by 17.39% (from 11.14% to 13.07%), whereas the application of two different phosphors enhanced efficiency by 31.63% (from 11.14% to 14.66%).

Keywords: spectral conversion; luminescent shifting; doped phosphors; silicon solar; solar cells

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.