The main purpose of this work is to illustrate the flame retardant properties of corn starch that is used as an additive to the classic electrolytes in lithium-ion cells. The… Click to show full abstract
The main purpose of this work is to illustrate the flame retardant properties of corn starch that is used as an additive to the classic electrolytes in lithium-ion cells. The advantages of using natural biomass include the increased biodegradability of the cell, compliance with the slogan of green chemistry, as well as the widespread availability and easy isolation of this ingredient. Due to the non-Newtonian properties of starch, it increases work safety and prevents the occurrence of thermal runaway as a shear-thinning fluid in the event of a collision. Thus, its use may, in the future, prevent explosions that affect electric cars with lithium-ion batteries without significantly degrading the electrochemical parameters of the cell. In the manuscript, the viscosity test, flash point measurements, the SET (self-extinguishing time) test and conductivity measurements were performed, in addition to the determination of electrochemical impedance spectroscopy (EIS) for the anode system. Additionally, the kinetic and thermodynamic parameters, for both flow and conductivity, were determined for a deeper analysis; this constitutes the scientific novelty of this study. Through mathematical analysis, it was shown that the optimal amount of added starch is 5%. This is supported primarily by the determined kinetic and thermodynamic parameters and the fact that the system did not gel during heating.
               
Click one of the above tabs to view related content.