LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis

Photo from wikipedia

The paper aims to investigate the influence of basalt fiber (BF) on the crack resistance of the asphalt mixture and conduct a mechanical analysis. First, two typical asphalt mixtures, namely… Click to show full abstract

The paper aims to investigate the influence of basalt fiber (BF) on the crack resistance of the asphalt mixture and conduct a mechanical analysis. First, two typical asphalt mixtures, namely AC-13 and SMA-13, were designed. The impact of BF on the mixture design results was analyzed. Then, several macroscopic tests, namely the four-point bending test, indirect tensile test, and semicircular bending test (SCB), were conducted to assess the effect of BF on the cracking resistance of asphalt mixtures. Finally, the influence of BF on the cracking resistance of asphalt mixtures was analyzed based on an environmental scanning electron microscope (ESEM) observation. The results show that: (1) BF increases the optimal asphalt content of AC13 and decreases the optimal asphalt content of SMA-13, which is caused by the different asphalt-absorption capacity of BF and lignin fiber (LF). (2) BF enhances both the fatigue crack resistance and temperature crack resistance of asphalt mixtures. The enhancement on the SMA-13 is more significant, indicating that the enhancement of BF on asphalt mixtures is related to the type of aggregate gradation. (3) BFs in the asphalt mixture lap each other to form a spatial network structure. Such structure can effectively improve the crack resistance of the mixture by dispersing the load stress and preventing the flow of asphalt mastic. The study results provide an effective method to design crack-resistant asphalt mixtures.

Keywords: asphalt; asphalt mixtures; crack resistance; resistance asphalt

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.