LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spectroscopic Properties of Inorganic Glasses Doped with Pr3+: A Comparative Study

Photo from wikipedia

The results presented in this communication concern visible and near-IR emission of Pr3+ ions in selected inorganic glasses, i.e., borate-based glass with Ga2O3 and BaO, lead-phosphate glass with Ga2O3, gallo-germanate… Click to show full abstract

The results presented in this communication concern visible and near-IR emission of Pr3+ ions in selected inorganic glasses, i.e., borate-based glass with Ga2O3 and BaO, lead-phosphate glass with Ga2O3, gallo-germanate glass modified by BaO/BaF2, and multicomponent fluoride glass based on InF3. Glasses present several emission bands at blue, reddish orange, and near-infrared spectral ranges, which correspond to 4f–4f electronic transitions of Pr3+. The profiles of emission bands and their relative intensity ratios depend strongly on glass-host. Visible emission of Pr3+ ions is tuned from red/orange for borate-based glass to nearly white light for multicomponent fluoride glass based on InF3. The positions and spectral linewidths for near-infrared luminescence bands at the optical telecommunication window corresponding to the 1G4 → 3H5, 1D2 → 1G4, and 3H4 → 3F3,3F4 transitions of Pr3+ are dependent on glass-host matrices and excitation wavelengths. Low-phonon fluoride glasses based on InF3 and gallo-germanate glasses with BaO/BaF2 are excellent candidates for broadband near-infrared optical amplifiers. Spectroscopic properties of Pr3+-doped glasses are compared and discussed in relation to potential optical applications.

Keywords: based inf3; near infrared; emission; inorganic glasses; spectroscopic properties; glass

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.