LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Some Specifics of Defect-Free Poly-(o-aminophenylene)naphthoylenimide Fibers Preparation by Wet Spinning

A series of model experiments were carried out on drops of poly-(o-aminophenylene)naphthoylenimide (PANI-O) solutions in N-methyl-2-pyrrolidone (NMP) surrounded by a coagulant of different compositions as starting points of defect-free fibers… Click to show full abstract

A series of model experiments were carried out on drops of poly-(o-aminophenylene)naphthoylenimide (PANI-O) solutions in N-methyl-2-pyrrolidone (NMP) surrounded by a coagulant of different compositions as starting points of defect-free fibers spinning by the wet method. An influence of compositions of dopes and multicomponent coagulants on the diffusion kinetics and drop morphology during coagulation has been investigated. It is shown that the defining parameters of the coagulation process are viscoelastic properties of the polymer solution and the diffusion activity of the coagulant, meaning not only the rate of coagulation but also the presence/absence of macro defects in the resulting fiber. The optimal morphology of as-spun fibers is obtained by coagulation of solution in a three-component mixture containing solvent and two precipitants of different activity (water and ethanol). The chosen coagulating mixture was used for the fiber spinning of PANI-O with different molecular weights dopes, and fibers with sufficiently high strength (~250 MPa), moduli (~2.1 MPa), and elongation at break (50%) were obtained.

Keywords: coagulation; poly aminophenylene; aminophenylene naphthoylenimide; defect free; free poly; specifics defect

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.