This study suggests an intensive green roof as part of a sustainable and hazard-resistant conceptual design for the retrofitting of old buildings in Israel. The roof is suggested to be… Click to show full abstract
This study suggests an intensive green roof as part of a sustainable and hazard-resistant conceptual design for the retrofitting of old buildings in Israel. The roof is suggested to be built with waste-based materials. A five-story reinforced concrete residential building was retrofitted with: Case 1: concrete wall strengthening (CWS)-conventional concrete + conventional green roof; Case 2: CWS-waste-included concrete + waste-based green roof; Case 3: seismic isolation columns (SIC)-conventional concrete + conventional green roof; and Case 4: SIC-waste-included concrete + waste-based green roof. Palekastro, Nuweiba, Tabas, and Erzincan ground motions were used for a structural dynamic time-history analysis of the retrofitted buildings. Life cycle assessments of cases 1–4 were performed using ReCiPe 2016 midpoint and endpoint evaluations. A two-stage analysis of variance (ANOVA) was used to analyze the ReCiPe endpoint results. According to the seismic results, Case 3 and Case 4 were much more preferable to Case 1 and Case 2, whereas according to the environmental evaluations, Case 4 was the most preferable to the other cases.
               
Click one of the above tabs to view related content.