LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reducing the Core Losses of Fe-Si-B Amorphous Alloy Ribbons by High Cooling Rate Planar Flow Casting

Photo from wikipedia

In the planar flow casting (PFC) process, the cooling rate significantly affects the structure and properties of a cast ribbon. The influence of the thermal conductivity of the cooling wheel… Click to show full abstract

In the planar flow casting (PFC) process, the cooling rate significantly affects the structure and properties of a cast ribbon. The influence of the thermal conductivity of the cooling wheel substrate on cooling rate was simulated by a numerical method, and it is shown that a higher thermal conductivity of the cooling wheel substrate leads to a higher cooling rate in the PFC process. Two copper-beryllium (Cu-2Be) rings with thermal conductivities of 175.3 W/m·K and 206.5 W/m·K were manufactured and installed onto a wheel core as the substrate of the cooling wheel. The effects of cooling rate on the soft magnetic properties of Fe-Si-B amorphous ribbons were investigated by pragmatic ribbon casting. The results show that the increment in the thermal conductivity of the cooling wheel substrate from 175.3 W/m·K to 206.5 W/m·K lowered the coercive force of amorphous ribbon from 2.48 A/m to 1.92 A/m and reduced the core losses at 1.4 T and 50 Hz by up to 22.1%.

Keywords: cooling rate; core; planar flow; wheel; rate; flow casting

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.