LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition

Photo from wikipedia

This study examined the microstructural gradation in Sn-doped, n-type Ga2O3 epitaxial layers grown on a two-inch sapphire substrate using horizontal hot-wall mist chemical vapor deposition (mist CVD). The results revealed… Click to show full abstract

This study examined the microstructural gradation in Sn-doped, n-type Ga2O3 epitaxial layers grown on a two-inch sapphire substrate using horizontal hot-wall mist chemical vapor deposition (mist CVD). The results revealed that, compared to a single Ga2O3 layer grown using a conventional single-step growth, the double Ga2O3 layers grown using a two-step growth process exhibited excellent thickness uniformity, surface roughness, and crystal quality. In addition, the spatial gradient of carrier concentration in the upper layer of the double layers was significantly affected by the mist flow velocity at the surface, regardless of the dopant concentration distribution of the underlying layer. Furthermore, the electrical properties of the single Ga2O3 layer could be attributed to various scattering mechanisms, whereas the carrier mobility of the double Ga2O3 layers could be attributed to Coulomb scattering owing to the heavily doped condition. It strongly suggests the two-step-grown, lightly-Sn-doped Ga2O3 layer is feasible for high power electronic devices.

Keywords: mist chemical; grown using; layer; chemical vapor; layers grown; ga2o3

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.