LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluating the X-ray-Shielding Performance of Graphene-Oxide-Coated Nanocomposite Fabric

Photo from wikipedia

Exposure to ionizing radiation (IR) during diagnostic medical procedures brings certain risks, especially when experiencing recurrent exposures. The fabrication of nano-based composites, doped with different nanoparticles, have been suggested as… Click to show full abstract

Exposure to ionizing radiation (IR) during diagnostic medical procedures brings certain risks, especially when experiencing recurrent exposures. The fabrication of nano-based composites, doped with different nanoparticles, have been suggested as effective shielding materials to replace conventional lead-based ones in material sciences and nanotechnology. In this study, commercially available fabrics, used to produce scrubs and gowns for clinical staff, are modified utilizing graphene oxide (GO) nanoparticles using a layer-by-layer (LBL) technique. GO was obtained from graphite through environmentally friendly technology by using a modified–improved Hummers’ method without NaNO3. Lightweight, flexible, air- and water-permeable shielding materials are produced that are wearable in all-day clinical practice. The nanoparticles are kept to a minimum at 1 wt%; however, utilizing the LBL technique they are distributed evenly along the fibers of the fabrics to achieve as much shielding effect as possible. The evaluation of samples is accomplished by simulating real-time routine clinical procedures and the radiographic programs and devices used daily. The GO-coated nanocomposite fabrics demonstrated promising results for X-ray shielding.

Keywords: evaluating ray; shielding materials; graphene oxide; coated nanocomposite; ray shielding

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.