LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Fast Thermal 1D Model to Study Aerospace Material Response Behaviors in Uncontrolled Atmospheric Entries

Photo from wikipedia

A preliminary thermal 1D numerical model for studying the demise behavior of stainless steel 316L, silicon carbide (SiC) and carbon fiber reinforced polymer (CFRP) during uncontrolled atmospheric entry is proposed.… Click to show full abstract

A preliminary thermal 1D numerical model for studying the demise behavior of stainless steel 316L, silicon carbide (SiC) and carbon fiber reinforced polymer (CFRP) during uncontrolled atmospheric entry is proposed. Test case modeling results are compared to experimental data obtained in the framework of ESA Clean Space initiative: material samples were exposed to different heat flux conditions using the Plasma Wind Tunnel (PWT) facilities at the Institute of Space Systems (IRS) of the University of Stuttgart. This numerical model approximates the heating history of the selected materials by simulating their thermal response and temperature profiles, which have trends similar to the experimental curves that are found. Moreover, when high heat flux conditions are considered, the model simulates the materials’ mass loss due to the ablation process: at the end of the simulation, the difference between the experimental and the modeled results is about 17% for CFRP and 35% for stainless steel. To reduce the model’s uncertainties, the following analysis suggests the need to consider the influence of adequate material thermophysical properties and the physical-chemical processes that affect the samples’ temperature profile and mass loss.

Keywords: response; model study; uncontrolled atmospheric; thermal model; model; fast thermal

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.