In order to improve the initial viscosity and stability of Camellia oleifera cake-protein adhesive, Camellia oleifera cake-protein was blended with defatted soybean protein (DSP), soybean protein isolate (SPI), and casein,… Click to show full abstract
In order to improve the initial viscosity and stability of Camellia oleifera cake-protein adhesive, Camellia oleifera cake-protein was blended with defatted soybean protein (DSP), soybean protein isolate (SPI), and casein, followed by adhesive preparation through degradation and crosslinking methods. The performance of Camellia oleifera cake-protein adhesive was investigated by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopic (SEM), and thermogravimetric (TG) and X-ray diffraction (XRD). The results showed that DSP, SPI, and casein likely promoted the effective degradation of Camellia oleifera cake-protein, and, thus, more active groups were formed in the system, accompanied by more reactivity sites. The prepared adhesive had a lower curing temperature, and higher initial viscosity and stability, but the storage time was shortened. Moreover, DSP, SPI, and casein, themselves, were degraded into peptide chains with lower molecular weights; thus, improving the overall flexibility of the adhesive, facilitating a better elastic contact and regular array between crosslinking products, and further strengthening the crosslinked structure and density of the products. After curing, a compact and coherent reticular structure was formed in the adhesive layer, with both bonding strength and water resistance being significantly improved. According to the results obtained, the next step will be to study the DSP-modified Camellia oleifera cake-protein adhesive in depth.
               
Click one of the above tabs to view related content.