LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Simulation of Conical and Linear-Shaped Charges Using an Eulerian Elasto-Plastic Multi-Material Multi-Phase Flow Model with Detonation

Photo from wikipedia

This study developed a hydrocode to numerically simulate both conical and linear-shaped charges using an Eulerian multi-material and multi-phase flow model. Elasto-plastic solids and the detonation of a high explosive… Click to show full abstract

This study developed a hydrocode to numerically simulate both conical and linear-shaped charges using an Eulerian multi-material and multi-phase flow model. Elasto-plastic solids and the detonation of a high explosive charge were modeled using a Johnson–Cook material model and the programmed burn model, respectively. Further, the plasticity of the solids was calculated using a radial return mapping algorithm. The model was solved using a high-resolution computational fluid dynamics (CFD) technique on Cartesian grids. Material interfaces were tracked using the level-set method, and the boundary conditions were imposed using the ghost fluid method. The developed hydrocode was validated using high-speed impact problems. Consequently, the developed hydrocode was used to successfully simulate the evolution and penetration of metal jets in shaped charges after a detonation.

Keywords: shaped charges; detonation; material; multi; conical linear; model

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.