LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hot Deformation Behavior, Processing Maps and Microstructural Evolution of the Mg-2.5Nd-0.5Zn-0.5Zr Alloy

Photo by joshuanewton from unsplash

Isothermal hot compression experiments were conducted on Mg-2.5Nd-0.5Zn-0.5Zr alloy to investigate hot deformation behavior at the temperature range of 573–773 K and the strain rate range of 0.001 s−1–10 s−1… Click to show full abstract

Isothermal hot compression experiments were conducted on Mg-2.5Nd-0.5Zn-0.5Zr alloy to investigate hot deformation behavior at the temperature range of 573–773 K and the strain rate range of 0.001 s−1–10 s−1 using a Gleeble-3500D thermomechanical simulator. The results showed that the rheological curve showed a typical work hardening stage, and there were three different stages: work hardening, transition and steady state. A strain compensation constitutive model was established to predict the flow stress of the Mg-2.5Nd-0.5Zn-0.5Zr alloy, and the results proved that it had high predictability. The main deformation mechanism of the Mg-2.5Nd-0.5Zn-0.5Zr alloy was dislocation climbing. The processing maps were established to distinguish the unstable region from the working region. The maps showed that the instability generally occurred at high strain rates and low temperatures, and the common forms of instability were cracking and flow localization. The optimum machining range of the alloy was determined to be 592–773 K and 0.001–0.217 s−1. With the increase in deformation temperature, the grain size of the alloy grew slowly at the 573–673 K temperature range and rapidly at the 673–773 K temperature range.

Keywords: 5nd 5zn; 5zn 5zr; hot deformation; 5zr alloy; alloy

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.