Amid the COVID-19 pandemic, a sudden surge in the production and utilization of disposable, single-use facial masks has been observed. Delinquency in proper disposal of used facial masks endangers the… Click to show full abstract
Amid the COVID-19 pandemic, a sudden surge in the production and utilization of disposable, single-use facial masks has been observed. Delinquency in proper disposal of used facial masks endangers the environment with a new form of non-biodegradable plastic waste that will take hundreds of years to break down. Therefore, there is an urgent need for the resourceful recycling of such waste in an environmentally friendly way. This study presents an efficient solution by using waste masks in fibered or crushed form to produce environmentally friendly and affordable green concrete. This investigation assessed the mechanical and durability properties of waste masks-incorporated concrete. A total of six mixes were prepared for standardized tests to determine compressive strength, split cylinder tensile strength and rapid chloride penetration test (RCPT), and freeze-thaw resistance. The percentage of mask fibers used were 0.5, 1, 1.5, and 2% of concrete by volume, while crushed masks were used at 0.5% only. The mask waste in both forms was found suitable to be used in concrete. One percent of waste mask fibers was found as an optimum value to increase compressive and tensile strength, reduce chloride permeability, and increase freeze-thaw resistance. Besides this, 0.5% crushed mask fiber also performed well, especially for producing less permeable and highly durable concrete. It is thus corroborated that waste masks that increase pollution worldwide can be utilized sustainably to help build green buildings. By reutilizing waste masks to produce improved concrete with better strengths and higher durability, circular economy and sustainability are achieved, along with efficient waste management.
               
Click one of the above tabs to view related content.