LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-Temperature Cu/SiO2 Hybrid Bonding with Low Contact Resistance Using (111)-Oriented Cu Surfaces

Photo by fabiooulucas from unsplash

We adopted (111)-oriented Cu with high surface diffusivity to achieve low-temperature and low-pressure Cu/SiO2 hybrid bonding. Electroplating was employed to fabricate arrays of Cu vias with 78% (111) surface grains.… Click to show full abstract

We adopted (111)-oriented Cu with high surface diffusivity to achieve low-temperature and low-pressure Cu/SiO2 hybrid bonding. Electroplating was employed to fabricate arrays of Cu vias with 78% (111) surface grains. The bonding temperature can be lowered to 200 °C, and the pressure is as low as 1.06 MPa. The bonding process can be accomplished by a 12-inch wafer-to-wafer scheme. The measured specific contact resistance is 1.2 × 10−9 Ω·cm2, which is the lowest value reported in related literature for Cu-Cu joints bonded below 300 °C. The joints possess excellent thermal stability up to 375 °C. The bonding mechanism is also presented to provide more understanding on hybrid bonding.

Keywords: contact resistance; low temperature; sio2 hybrid; temperature; 111 oriented; hybrid bonding

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.