LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coupling Removal of P-Chloronitrobenzene and Its Reduction Products by Nano Iron Doped with Ni and FeOOH (nFe/Ni-FeOOH)

Photo from wikipedia

The removal of chlorinated pollutants from water by nanoparticles is a hot topic in the field of environmental engineering. In this work, a novel technique that includes the coupling effect… Click to show full abstract

The removal of chlorinated pollutants from water by nanoparticles is a hot topic in the field of environmental engineering. In this work, a novel technique that includes the coupling effect of n-Fe/Ni and its transformation products (FeOOH) on the removal of p-chloronitrobenzene (p-CNB) and its reduction products, p-chloroaniline (p-CAN) and aniline (AN), were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the nano-iron before and after the reaction. The results show that Fe0 is mainly oxidized into lath-like lepidocrocite (γ-FeOOH) and needle-like goethite (α-FeOOH) after 8 h of reaction. The coupling removal process and the mechanism are as follows: Fe0 provides electrons to reduce p-CNB to p-CAN and then dechlorinates p-CAN to AN under the catalysis of Ni. Meanwhile, Fe0 is oxidized to FeOOH by the dissolved oxygen and H2O. AN is then adsorbed by FeOOH. Finally, p-CNB, p-CAN, and AN were completely removed from the water. In the pH range between 3 and 7, p-CAN can be completely dechlorinated by n-Fe/Ni within 20 min, while AN can be nearly 100% adsorbed by FeOOH within 36 h. When the temperature ranges from 15 °C to 35 °C, the dechlorination rate of p-CAN and the removal rate of AN are less affected by temperature. This study provides guidance on the thorough remediation of water bodies polluted by chlorinated organics.

Keywords: nano iron; coupling removal; feooh; removal chloronitrobenzene; reduction products

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.