LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Toxicity of Bone Graft Materials to Human Mineralizing Cells

Photo from wikipedia

Bone graft materials from synthetic, bovine, and human sources were analyzed and tested for in vitro cytotoxicity on dental pulp stem cells (DPSCs) and osteosarcoma cells (Saos-2). Raman spectroscopy indicated… Click to show full abstract

Bone graft materials from synthetic, bovine, and human sources were analyzed and tested for in vitro cytotoxicity on dental pulp stem cells (DPSCs) and osteosarcoma cells (Saos-2). Raman spectroscopy indicated significant amounts of collagen only in human bone-derived materials, where the mineral to protein ratio was 3.55 ± 0.45, consistent with bone. X-ray fluorescence revealed tungsten (W) concentrations of 463 ± 73, 400 ± 77, and 92 ± 42 ppm in synthetic, bovine, and human bone chips, respectively. When these chips were added to DPSCs on tissue culture plastic, the doubling times after two days were the same as the controls, 16.5 ± 0.5 h. Those cultured with synthetic or bovine chips were 96.5 ± 8.1 and 25.2 ± 1.4 h, respectively. Saos-2 was more sensitive. During the first two days with allogeneic or bovine graft materials, cell numbers declined. When DPSC were cultured on collagen, allogeneic and bovine bone chips did not increase doubling times. We propose cytotoxicity was associated with tungsten, where only the concentration in human bone chips was below 184 ppm, the value reported as cytotoxic in vitro. Cells on collagen were resistant to bone chips, possibly due to tungsten adsorption by collagen.

Keywords: bone chips; bone; bovine; bone graft; graft materials

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.