LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of Mechanical and Electrical Performance of Aging Resistance ZTA Composites Reinforced with Graphene Oxide Consolidated by SPS

Photo from wikipedia

This paper presents a study of Al2O3–ZrO2 (ZTA) nanocomposites with different contents of reduced graphene oxide (rGO). The influence of the rGO content on the physico-mechanical properties of the oxide… Click to show full abstract

This paper presents a study of Al2O3–ZrO2 (ZTA) nanocomposites with different contents of reduced graphene oxide (rGO). The influence of the rGO content on the physico-mechanical properties of the oxide composite was revealed. Graphene oxide was obtained using a modified Hummers method. Well-dispersed ZTA-GO nanopowders were produced using the colloidal processing method. Using spark plasma sintering technology (SPS), theoretically dense composites were obtained, which also reduced GO during SPS. The microstructure, phase composition, and physico-mechanical properties of the sintered composites were studied. The sintered ZTA composite with an in situ reduced graphene content of 0.28 wt.% after the characterization showed improved mechanical properties: bending strength was 876 ± 43 MPa, fracture toughness—6.8 ± 0.3 MPa·m1/2 and hardness—17.6 ± 0.3 GPa. Microstructure studies showed a uniform zirconia distribution in the ZTA ceramics. The study of the electrical conductivity of reduced graphene oxide-containing composites showed electrical conductivity above the percolation threshold with a small content of graphene oxide (0.28 wt.%). This electrical conductivity makes it possible to produce sintered ceramics by electrical discharge machining (EDM), which significantly reduces the cost of manufacturing complex-shaped products. Besides improved mechanical properties and EDM machinability, 0.28 wt.% rGO composites demonstrated high resistance to hydrothermal degradation.

Keywords: mechanical properties; reduced graphene; electrical conductivity; resistance; graphene oxide; zta

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.