LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrical Characteristics of Diamond MOSFET with 2DHG on a Heteroepitaxial Diamond Substrate

Photo from wikipedia

In this work, hydrogen-terminated diamond (H-diamond) metal-oxide-semiconductor field-effect-transistors (MOSFETs) on a heteroepitaxial diamond substrate with an Al2O3 dielectric and a passivation layer were characterized. The full-width at half maximum value… Click to show full abstract

In this work, hydrogen-terminated diamond (H-diamond) metal-oxide-semiconductor field-effect-transistors (MOSFETs) on a heteroepitaxial diamond substrate with an Al2O3 dielectric and a passivation layer were characterized. The full-width at half maximum value of the diamond (004) X-ray rocking curve was 205.9 arcsec. The maximum output current density and transconductance of the MOSFET were 172 mA/mm and 10.4 mS/mm, respectively. The effect of a low-temperature annealing process on electrical properties was also investigated. After the annealing process in N2 atmosphere, the threshold voltage (Vth) and flat-band voltage (VFB) shifts to negative direction due to loss of negative charges. After annealing at 423 K for 3 min, the maximum value of hole field effective mobility (μeff) increases by 27% at Vth − VGS = 2 V. The results, which are not inferior to those based on homoepitaxial diamond, promote the application of heteroepitaxial diamond in the field of electronic devices.

Keywords: diamond substrate; characteristics diamond; heteroepitaxial diamond; electrical characteristics; diamond mosfet; diamond

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.