Heterogeneity of fibroblasts directly affects the outcome of tissue regeneration; however, whether bioactive ceramics regulate bone regeneration through fibroblasts is unclear. Ectopic bone formation model with biphasic calcium phosphate (BCP)… Click to show full abstract
Heterogeneity of fibroblasts directly affects the outcome of tissue regeneration; however, whether bioactive ceramics regulate bone regeneration through fibroblasts is unclear. Ectopic bone formation model with biphasic calcium phosphate (BCP) implantation was used to investigate the temporal and spatial distribution of fibroblasts around ceramics. The effect of BCP on L929 fibroblasts was evaluated by EdU assay, transwell assay, and qRT-PCR. Further, the effect of its conditioned medium on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was confirmed by ALP staining. SEM and XRD results showed that BCP contained abundant micro- and macro-pores and consisted of hydrogen-apatite (HA) and β-tricalcium phosphate (β-TCP) phases. Subsequently, BCP implanted into mice muscle successfully induced osteoblasts and bone formation. Fibroblasts labelled by vimentin gathered around BCP at 7 days and peaked at 14 days post implantation. In vitro, BCP inhibited proliferation of L929 fibroblast but promoted its migration. Moreover, expression of Col1a1, Bmp2, and Igf1 in L929 treated by BCP increased significantly while expression of Tgfb1 and Acta did not change. ALP staining further showed conditioned media from L929 fibroblasts treated by BCP could enhance osteogenic differentiation of BMSCs. In conclusion, fibroblasts mediate ectopic bone formation of calcium phosphate ceramics.
               
Click one of the above tabs to view related content.