This research will help to improve our understanding of the fracture properties of ECC at low temperatures (long-term low temperatures, freeze–thaw) and evaluate the safety properties of ECC under low-temperature… Click to show full abstract
This research will help to improve our understanding of the fracture properties of ECC at low temperatures (long-term low temperatures, freeze–thaw) and evaluate the safety properties of ECC under low-temperature conditions. Three levels of saturation (saturated, semi-saturated, and dry), four target temperatures (20, 0, −20, and −60 °C), and the effect of the coupled of the two on the mode I fracture properties of ECC were investigated. Then, we compared and analyzed the fracture properties of ECC loaded at 20 and −20 °C, after different freeze–thaw cycles (25, 50, 100 cycles), which were compared with saturated specimens without freeze–thaw at the four target temperatures to analyze the differences in low-temperature and freeze–thaw failure mechanisms. Temperatures and saturation have a significant effect on the fracture properties. Low temperatures and freeze–thaw treatments both decreased the nominal fracture energy of ECC. Distinct differences in matrix and fiber-matrix interface damage mechanisms have been discovered. Low temperatures treatment transforms ECC from a ductile to a brittle fracture mode. However, even after 100 freeze–thaw cycles, it remains ductile fractured. This study complements the deficiencies of ECC in low-temperature theoretical and experimental applications, and it sets the stage for a broad range of ECC applications.
               
Click one of the above tabs to view related content.