LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Temperatures and Moisture Content on the Fracture Properties of Engineered Cementitious Composites (ECC)

Photo from wikipedia

This research will help to improve our understanding of the fracture properties of ECC at low temperatures (long-term low temperatures, freeze–thaw) and evaluate the safety properties of ECC under low-temperature… Click to show full abstract

This research will help to improve our understanding of the fracture properties of ECC at low temperatures (long-term low temperatures, freeze–thaw) and evaluate the safety properties of ECC under low-temperature conditions. Three levels of saturation (saturated, semi-saturated, and dry), four target temperatures (20, 0, −20, and −60 °C), and the effect of the coupled of the two on the mode I fracture properties of ECC were investigated. Then, we compared and analyzed the fracture properties of ECC loaded at 20 and −20 °C, after different freeze–thaw cycles (25, 50, 100 cycles), which were compared with saturated specimens without freeze–thaw at the four target temperatures to analyze the differences in low-temperature and freeze–thaw failure mechanisms. Temperatures and saturation have a significant effect on the fracture properties. Low temperatures and freeze–thaw treatments both decreased the nominal fracture energy of ECC. Distinct differences in matrix and fiber-matrix interface damage mechanisms have been discovered. Low temperatures treatment transforms ECC from a ductile to a brittle fracture mode. However, even after 100 freeze–thaw cycles, it remains ductile fractured. This study complements the deficiencies of ECC in low-temperature theoretical and experimental applications, and it sets the stage for a broad range of ECC applications.

Keywords: properties ecc; fracture; effect; freeze thaw; low temperatures; fracture properties

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.