Recent studies have shown that the introduction of silicon can effectively improve the dielectric properties of polyimide (PI), and the introduction of a silicon–oxygen bond can increase the flexibility of… Click to show full abstract
Recent studies have shown that the introduction of silicon can effectively improve the dielectric properties of polyimide (PI), and the introduction of a silicon–oxygen bond can increase the flexibility of the PI molecular structure, which is conducive to reducing the moisture absorption rate of PI materials. In this experiment, 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyl disiloxane (DSX) was mixed with 4,4′-diaminodiphenyl ether (ODA) in different proportions. A series of PI films containing silicon was obtained by random polymerization with pyromellitic dianhydride (PMDA), 3,3′,4,4′-diphenylketotetrahedral anhydride (BTDA) and biphenyl dianhydride (BPDA), and then tetrad copolymerization with three kinds of dianhydrides. At the same time, the PI structures were put into calculation software to obtain the simulated polarization results, and then the films were characterized by various properties. The results showed that the characterization results were consistent with that of simulation, and the best overall PI formula was when the ratio of diamines was 1:9 and mixed with PMDA. The performance data were as follows: the vitrification temperature was about 320 °C, T5 was 551 °C, water absorption was 1.56%, dielectric constant (Dk) was 2.35, dielectric loss (Df) was 0.007, tensile strength was 70 MPa and elongation at break was 10.2%.
               
Click one of the above tabs to view related content.