LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Kaolin Geopolymer Ceramics Addition on the Microstructure and Shear Strength of Sn-3.0Ag-0.5Cu Solder Joints during Multiple Reflow

Photo from wikipedia

Solder interconnection in three-dimensional (3D) electronic packaging is required to undergo multiple reflow cycles of the soldering process. This paper elucidates the effects of multiple reflow cycles on the solder… Click to show full abstract

Solder interconnection in three-dimensional (3D) electronic packaging is required to undergo multiple reflow cycles of the soldering process. This paper elucidates the effects of multiple reflow cycles on the solder joints of Sn-3.0Ag-0.5Cu (SAC305) lead (Pb)-free solder with the addition of 1.0 wt.% kaolin geopolymer ceramics (KGC). The samples were fabricated using powder metallurgy with the hybrid microwave sintering method. Apart from using conventional cross-sectioned microstructure imaging, advanced synchrotron real-time in situ imaging was used to observe primary IMC formation in SAC305-KGC solder joints subjected to multiple reflow soldering. The addition of KGC particles in SAC305 suppressed the Cu6Sn5 IMC’s growth as primary and interfacial layers, improving the shear strength after multiple reflow soldering. The growth rate constant for the interfacial Cu6Sn5 IMC was also calculated in this study. The average growth rate of the primary Cu6Sn5 IMCs decreased from 49 µm/s in SAC305 to 38 µm/s with the addition of KGC particles. As a result, the average solidified length in the SAC305-KGC is shorter than SAC305 for multiple reflow soldering. It was also observed that with KGC additions, the growth direction of the primary Cu6Sn5 IMC in SAC305 changed from one growth to two growth directions. The observed results can be attributed to the presence of KGC particles both at grains of interfacial Cu6Sn5 IMCs and at the surface of primary Cu6Sn5 IMC.

Keywords: addition; solder; growth; solder joints; multiple reflow; cu6sn5

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.