LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Review of the Effects of Raw Material Compositions and Steam Curing Regimes on the Performance and Microstructure of Precast Concrete

Photo by gdtography from unsplash

In this paper, the effects of steam curing conditions on concrete properties and microstructural characteristics are reviewed, and technical approaches such as appropriate raw material compositions and curing regimes are… Click to show full abstract

In this paper, the effects of steam curing conditions on concrete properties and microstructural characteristics are reviewed, and technical approaches such as appropriate raw material compositions and curing regimes are explored. Moreover, the environmental effects of precast concrete are evaluated. The main conclusion is that steam curing can improve the early strength of concrete, but thermal damage, shrinkage cracking, delayed ettringite formation (DEF), and other factors cause the later strength to increase more slowly or even deteriorate. Accordingly, it is necessary to undertake methods for improvement: (1) Adopt a lot of high-activity mineral admixture + a few low-activity mineral admixture combinations to ensure that the early strength of concrete meets the standard while allowing the subsequent development of concrete hydration to ensure durability. (2) Control the precuring time and temperature gradient of the concrete to allow the initial structure of the concrete to form. (3) Use effective secondary curing, such as soaking in an aqueous solution of limestone, in addition to standard curing to further improve the compactness of concrete. Moreover, the replacement of cement with less than 30% mineral admixtures in steam-cured concrete should be promoted to alleviate the environmental hazards caused by excessive CO2 emissions.

Keywords: steam curing; curing regimes; raw material; concrete; precast concrete; material compositions

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.