LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Fidelity Surrogate-Based Process Mapping with Uncertainty Quantification in Laser Directed Energy Deposition

Photo from wikipedia

A multi-fidelity (MF) surrogate involving Gaussian processes (GPs) is used for designing temporal process maps in laser directed energy deposition (L-DED) additive manufacturing (AM). Process maps are used to establish… Click to show full abstract

A multi-fidelity (MF) surrogate involving Gaussian processes (GPs) is used for designing temporal process maps in laser directed energy deposition (L-DED) additive manufacturing (AM). Process maps are used to establish relationships between the melt pool properties (e.g., melt pool depth) and process parameters (e.g., laser power and scan velocity). The MFGP surrogate involves a high-fidelity (HF) and a low-fidelity (LF) model. The Autodesk Netfabb® finite element model (FEM) is selected as the HF model, while an analytical model developed by Eagar-Tsai is chosen as the LF one. The results show that the MFGP surrogate is capable of successfully blending the information present in different fidelity models for designing the temporal forward process maps (e.g., given a set of process parameters for which the true depth is not known, what would be the melt pool depth?). To expand the newly-developed formulation for establishing the temporal inverse process maps (e.g., to achieve the desired melt pool depth for which the true process parameters are not known, what would be the optimal prediction of the process parameters as a function of time?), a case study is performed by coupling the MFGP surrogate with Bayesian Optimization (BO) under computational budget constraints. The results demonstrate that MFGP-BO can significantly improve the optimization solution quality compared to the single-fidelity (SF) GP-BO, along with incurring a lower computational budget. As opposed to the existing methods that are limited to developing steady-state forward process maps, the current work successfully demonstrates the realization of temporal forward and inverse process maps in L-DED incorporating uncertainty quantification (UQ).

Keywords: multi fidelity; fidelity surrogate; fidelity; process maps; process

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.