LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Green-Engineered Cementitious Composite Production with High-Strength Synthetic Fiber and Aggregate Replacement

Photo from wikipedia

Engineered cementitious composites (ECCs) are potentially useful structural reinforcement and repair materials. However, owing to their high costs and carbon emissions, they are not used extensively. To control these carbon… Click to show full abstract

Engineered cementitious composites (ECCs) are potentially useful structural reinforcement and repair materials. However, owing to their high costs and carbon emissions, they are not used extensively. To control these carbon emissions and costs, recycled fly ash cenospheres (FACs) and high-strength polyethylene (PE) fibers are used here to explore the possibility of developing green lightweight ECCs (GLECCs). A series of experiments was conducted to test the physical and mechanical properties of the developed GLECC and to evaluate the possibility of developing an GLECC. The crack width development of the GLECC was also analyzed using the digital image correlation method. The experimental results indicate the following: (1) The increase in FAC content and the decrease in PE content worsened the performance of GLECCs, but the resulting GLECCs still had significant strain-hardening properties; (2) The performance and costs of GLECCs can be balanced by adjusting the amount of FAC and PE. The maximum amount of FACs attainable is 0.45 (FAC/binder), and the required amount of PE fibers can be reduced to 1%. As a result, the cost was reduced by 40% and the carbon emission was reduced by 36%, while the compressive strength was greater than 30 MPa, the tensile strength was greater than 3.5 MPa, and the tensile strain was nearly 3%. (3) The width of the crack was positively correlated with the FAC content and negatively correlated with the fiber content. In the 0.8% strain range, the average crack width can be controlled to within 100 μm and the maximum crack width can be controlled to within 150 μm, with the performance still meeting the requirements of many applications.

Keywords: strength; engineered cementitious; green engineered; crack width; high strength

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.